

30 June-2 July 2025

Alena Wabitsch

University of Oxford

The Messenger Matters

The Messenger Matters

Alena Wabitsch University of Oxford

Overview

Motivation

- Successful policy communication must reach and influence the public
- How can this be achieved?

Does it matter who communicates?

Context of central banks: Communication as a monetary policy tool

This Paper

How does the messenger impact central bank communication?

Empirical evidence using national heterogeneity in the Euro area:

- 1. Motivating evidence from Twitter
- 2. Causal evidence from inflation forecasting experiment

How should messengers be selected to optimally communicate to the public?

Optimal communication: disclosure and delegation

3. Generalized coordination model with strategic complementarity (on the social value of public information)

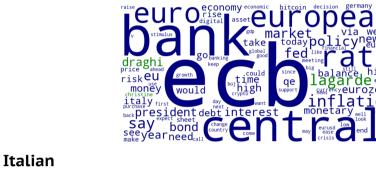
Main Findings

Messenger effects: (i) Information availability

- (ii) Information processing
- Individuals who match messenger's nationality (the ingroup)... \blacksquare ...are reached more: \sim 1/3 more likely
- ...use information more: inflation expectations use signal \sim 5pp more, halving gap to Bayesian
 - → Positive nationality-based ingroup effects make policy communication more effective

Optimal communication through diverse messengers?

- Mostly desirable Sometimes harmful
- → Strategic selection of messengers (delegation) is a powerful additional policy tool

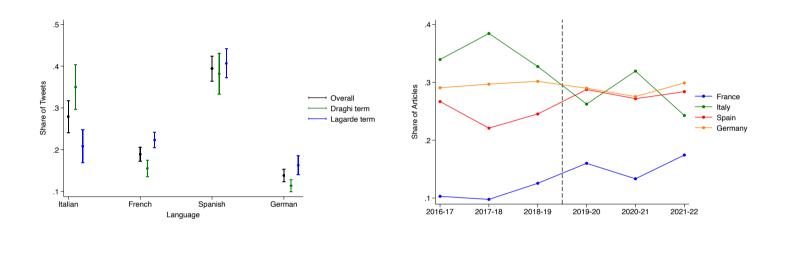

1. Motivating Evidence

Motivating Evidence


New Dataset:

- >8m tweets in 5 languages (DE, ES, FR, IT & EN)
- Language proxies nationality
- Contain "ECB", "European Central Bank" or translated equivalents
- 2016-2022: 3 years per president (Draghi and Lagarde), 48 press conferences
- Ingroup: Messenger and receiver match nationalities

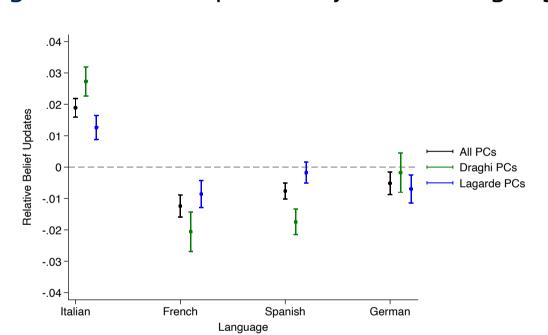
Figure 1. Focus on Policymakers Varies by Tweet Language



Insights: 2 Dimensions of Messenger Effects

1. Higher information availability for the ingroup 2. Stronger belief updating by the ingroup

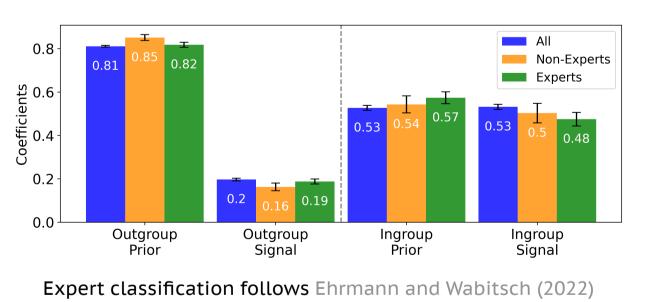
1. Information Availability


Figure 2. Share of Tweets and Newspaper Articles by Language

Information availability increases for the ingroup (by 10.5pp*** on Twitter and by 6.1pp*** for print media)

2. Information Processing: Belief Updates

- **Beliefs:** Measured as tweet sentiment $\in (-1, 1)$, dictionary-approach Relative belief updates:
- Between last tweet during quiet period...and first tweet after press conference (within 24 hours) Absolute change in sentiment (demeaned)
 - Figure 3. Belief Updates by Tweet Language


Information processing: Stronger belief updating by ingroup (0.014***)

Updates to a Signal

Novel information (surprise) from 48 press conferences OIS-2Y monetary surprise indicator from Euro Area Monetary Policy Event-Study Database (EA-MPD) by Altavilla et al. (2019)

> $Posterior_{i,t} = \beta_1 Prior_{i,t} + \beta_2 Prior_{i,t} * Ingroup_{i,t} + \beta_3 Ingroup_{i,t}$ $+ \beta_4 Signal_t + \beta_5 Signal_t * Ingroup_{i,t} + \epsilon_{i,t}$

Figure 4. Linear combination of coefficients with 95% CI

Ingroup updates beliefs closer to signals (across expertise)

Inflation Forecasting Experiment

Step 3

3.1 Survey

At core: Is information used differently across messengers?

2.1 Messenger's

2.2 Posterior

6 forecasting tasks with different messenger treatments

Representative policymakers and institutions: trust and exposure

signal and optional

Why Twitter

- Real-world evidence
- Reduced concerns about: Extrapolation, Hawthorne or experimenter demand effects
- Modern information supply High-frequency panel insights

Step 1

(within-subject)

Perceived messenger ability

1.1 Inflation

history

1.2 Prior

Survey:

Data:

2. Inflation Forecasting Experiment

Treatments: Signals from varying messengers

Step 2

Incentivized inflation forecasting tasks

Limitations

- Specific policymakers Other co-occurring events
- and platform trends
- Crude beliefs

Experiment

Addresses limitations

Step 4

4.1 Reveal

2. Inflation Forecasting Experiment (cont.)

Experimental Design

Two key decisions per inflation forecasting task:

Read more Read more

2. Attention to information

European Central Bank (ECB)

■ **Treatments:** Messengers of signals

Prior and Posterior (with precision):

1. Experts of in- and outgroup nationality 2. ECB Experts of in- and outgroup nationality 3. ECB and NCB (national central bank) experts 6 inflation scenarios

Incentivized to minimize forecast error

Randomization: Messenger-inflation match, messenger order

Updating Inflation Expectations: Estimation

Standard Bayesian belief updating:

- Prior about $x \sim \mathcal{N}(A_i, \alpha_i^{-1})$ Signal $B_i = x + e$, where $e \sim \mathcal{N}(0, \beta_i^{-1})$
- Posterior $E_i[x|B_j] = \frac{\alpha_i A_i + \beta_j B_j}{\alpha_i + \beta_i}$

Following e.g., Benjamin (2019): If $\gamma = \delta = 1$: Bayesian Updating If $\gamma > < 1$: prior over-/under-use

If $\delta > < 1$: signal over-/under-use

Figure 5. Signal Use (δ) All treatments: $\delta = 0.90$

Findings

Hypothesis 1: The Pure Causal Ingroup Effect

Signals of ingroup messengers are used more to update inflation expectations (0.052***)

Messenger

Expert from France Expert from Italy

Individual-FE

Treatment Hypotheses

	3 4		Expert from Germany Expert from Spain			
				(1)	(2)	(3)
,	<i>J</i> =2	(B:)	Pure Ingroup Effect (H1):		0.047*** (0.017)	
•	$\left(\underbrace{\frac{\alpha_i}{\alpha_i + \beta_j} A_i}\right) + \sum_{j=1} \delta_j 7$	$ \int_{J} \underbrace{\left(\frac{\beta_{j}}{\alpha_{i} + \beta_{j}} B_{j}\right)} + \epsilon_{i} $	j R-squared N	0.960 795	0.986 795	0.994 795
V	weighted Prior	weighted Signal	Inflation Scenario Treatment Order		√ ✓	√ ✓

Hypothesis 2: Institutional Context

The ingroup effect diminishes yet persists within institutional context: Signals of ingroup messengers within ECB context are used more (0.028*)

Treatment	Hypotheses	Messenger
5	H2, H3	Expert from France representing ECB
6	H2, H3	Expert from Italy representing ECB
7	H2, H3	Expert from Germany representing ECB
8	H2, H3	Expert from Spain representing ECB

Hypothesis 3: Homophily or Heterophobia?

Homophily drives ingroup effects within the ECB context

Potential causes of ingroup effect:

(i) Homophily: liking for sameness (ii) Heterophobia: dislike for difference

Comparing signal use between:

(i) Ingroup and neutral ECB expert $(0.035^{**}) \rightarrow Homophily$

(ii) Outgroup and neutral ECB expert (0.013) \rightarrow Not heterophobia

Hypothesis 4: Varying Institutions

We can change (perceived) nationality by varying institutions: Signals from national institutions are used more **(0.034****)

Treatment	Hypotheses	Messenger
9	H3, H4	Expert representing ECB
10	H4	Expert representing NCB
10	,	

The Mechanism

Perceived Quality:

- \sim 80% of causal ingroup effect explained by perceived quality (i.e., perceived messenger ability)
- Remaining effect of (0.010**)
- Similar reduction of effects for other hypotheses

Trust:

- Fully explains the positive NCB effect
- Explains more than half of homophily effect, but some relative over-use remains (**0.021*****)

Information Reach & Attention

Ingroup policymakers **reach** audiences better:

How well are you informed about the institutions or policymakers listed below?'

ECB Board Member NCB Governor Fabio Panetta Ignazio Visco Luis de Guindos Pablo Hernández de Cos

27.1% more likely to **know** representative ingroup policymakers

28.6% more likely to follow news What causes attention?

- Attention to information is unaffected by the messenger
- Attention is endogenous to the inflationary environment

Figure 6. Revealed Buttons (with 95%-CI)

Ingroup policymakers improve reach through information availability, not attention

3. Modeling Optimal Communication

Modeling Optimal Communication

- Social welfare evaluation of public information (Morris and Shin, 2002) Optimal transparency debate: public communication as a double-edged sword
- What is optimal communication policy considering messenger effects?

A Generalized Coordination Model on the Social Value of Public Information ('Beauty Contest')

Environment:

• Agents $i \in [0,1]$ choose action $a_i \in \mathbb{R}$ to maximize $u_i \in \mathbb{R}$ Care about aligning actions with unknown $x \sim \mathcal{N}(\mu, \tau_x^{-1})$ and coordinating with

 $u_i = -(1-r)(a_i-x)^2 - r(a_i-\bar{a})^2$

- Share α of ingroup agents and (1α) outgroup agents Social Welfare: $W(a,x) = \frac{1}{1-r} \int_0^1 u_i(a,x) \, di = -\int_0^1 (a_i-x)^2 \, di$
- **Information Structure:** Private signals: $y_i = x + \epsilon_{y,i}$, $\epsilon_{y,i} \sim \mathcal{N}(0, \tau_y^{-1})$

Public signal: $Y = X + \epsilon_Y = X + \epsilon_Z + \epsilon_V$, $\epsilon_Z \sim \mathcal{N}(\mathbf{0}, \tau_Z^{-1})$, $\epsilon_V \sim \mathcal{N}(\mathbf{0}, \tau_V^{-1})$

Central bank: Disclosure Policy: Central bank controls precision of public signal τ_Y via τ_V

Delegation Policy: Choose messenger(s) to set ingroup-outgroup share α Timeline:

1. Decision on delegation and public information disclosure 2. Agents receive signals and choose their actions to maximize expected utility

- Agent Types $h \in \{g, o\}$: • Ingroup (g):
 - Match messenger characteristics ($\theta_i = \theta_m$)
 - Receive all public signals Y Form beliefs like Bayesians
 - **Outgroup** (*o*):

where $q = 1 - r + r(1 - \alpha)(1 - A)$

- Do not match messenger characteristics ($\theta_i \neq \theta_m$) • Receive Y if $|Y| \geq d_o$, where $d_o \sim \mathcal{N}_+(0,1)$ • Fraction of informed outgroup agents: $A = 2\Phi(|Y|) - 1$.
- Form beliefs with Resonance Weight (Malmendier and Veldkamp, 2022): $\rho_{im} = (2 - 2\Phi(\chi||\theta_i - \theta_m||))$

All agents know A but are unaware of belief updating biases

Actions in the Unique Linear Equilibrium

 $a_{io}(y_i) = y_i$ Uninformed Outgroup Ingroup Informed Outgroup

Optimal Communication Policy

PROPOSITION. Increasing the precision of the public signal (τ_Y) improves welfare only if the public signal is sufficiently precise relative to private signals and if the coordination motive r is not too high.

Figure 7. Disclosure's Effect on Social Welfare

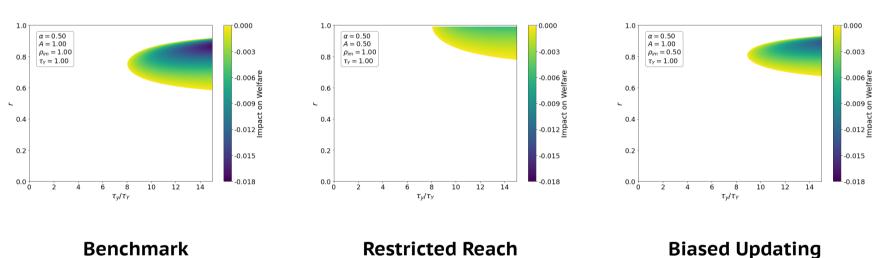


Figure 8. Social Welfare Contours: Disclosure and/or Delegation?

Outgroup agents mitigate welfare losses from disclosure

Low Coordination (r = 0.10)High Coordination (r = 0.90)

A = 0.5, $\rho_{im} = 0.95$, $\tau_{v} = 1.0$, r = 0.9

• Social welfare can benefit from strategic delegation (setting α)

delegation as alternative to limiting disclosure

Choosing to delegate depends on coordination r: **Low** r: Maximizing α ($\alpha^* = 1$) is optimal (and so is full disclosure) ■ **High** r: Reducing α can prevent over-reliance on noisy public signals \rightarrow strategic

other institutions

Strategic selection of messengers (delegation) is a

powerful additional policy tool

■ Two concrete examples of **delegation**: other board members or

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

A = 0.5, $\rho_{im} = 0.95$, $\tau_{v} = 1.0$, r = 0.1

Conclusion

The Messenger Matters

- When characteristics of the messenger(s) align with those of receivers, central bank communication is more effective
- Two dimensions: reach and influence Delegation of communication can be a powerful
- policy tool Policy communication with the public beyond
- central bank context: fiscal, climate, health, education, etc.

Disclosures

Ethics approval reference: ECONCIA21-22-24. AEA RCT Registry ID: AEARCTR-0010727.

Funded by: The Austrian Economic Association (NOeG) 2022 Dissertation Fellowship, St Catherine's College (Oxford), the Department of Economics (Oxford).

alena.wabitsch@economics.ox.ac.uk

https://www.alenawabitsch.eu/

400 participants via Prolific, collected in fall of 2023 Participant nationality (+ residence): DE, ES, FR, IT