Fiscal-Monetary Interactions in HANK vs RANK

George-Marios Angeletos Chen Lian Christian Wolf

December 4, 2025

Questions

Two questions:

- Q1: How, and how much, do fiscal deficits drive y and π ?

 ALW (2024) "Deficits and Inflation: HANK meets FTPL"
- Q2: What fiscal framework best supports CB's dual mandate?

 ALW (2025) "Fiscal Inaction as Monetary Support"

Questions

Two questions:

- **Q1:** How, and how much, do fiscal deficits drive y and π ?

 ALW (2024) "Deficits and Inflation: HANK meets FTPL"
- Q2: What fiscal framework best supports CB's dual mandate?

 ALW (2025) "Fiscal Inaction as Monetary Support"

Two approaches to answering these questions:

- RANK w/ fiscal dom: equil selection → fragile + no empirical microfoundations
- HANK: non-Ricardian consumers → robust + ample empirical microfoundations

RANK w/ Fiscal Dominance

- Slow or no fiscal adjustment is "bad" because it yields fiscal dominance
 - MP looses control of π and y; these are instead pinned down by fiscal deficits
- Paradox: requires Ricardian Equiv to fail despite Ricardian households!
 - underscores that fiscal dominance = fragile self-fulfilling prophesy
- **Takeaway:** in "refined" RANK,
 - FP is irrelevant
 - MP is dominant even if Taylor principle fails
 - traditional approach to F-M interactions is out

HANK

- Different mechanism: hhs are non-Ricardian, so deficits naturally stimulate AD
 - theoretically robust, supported by micro evidence
- Lesson 1 (ALW'24): deficits can be "very" inflationary
 - ullet despite diff mechanism, FTPL-like predictions indeed even w/ active MP & passive FP
 - but only under appropriate & empirically verifiable conditions
- Lesson 2 (ALW'25): CB may welcome slow or even no fiscal adjustment
 - stabilizes both y and π against demand shocks
 - minimizes tax distortions, improves y, π trade off against supply shocks

Roadmap

- Framework nests both RANK and HANK
- Deconstruct fiscal dominance in RANK
- Study F-M interaction in HANK
 - focus on Lesson 2: CB may prefer no fiscal adj over business cycle

■ AS: a Phillips curve

$$\pi_t = \mathscr{P}(\{y_{t+k}\}) + u_t = \begin{cases} \kappa y_t + u_t & \text{theory} \\ \text{standard or hybrid NKPC} & \text{quantitative} \end{cases}$$

- lacktriangleright elementary observation: π is pinned down by real spending
 - \Rightarrow deficits can be inflationary iff they drive c,y (or via tax distortions entering u)

AD

■ AD: perpetual youth OLG, with survival prob $\omega \in (0,1]$ simplifying assumptions: annuities; social fund; labor unions; no capital

$$c_t = \underbrace{(1 - \beta \omega)}_{\mathsf{MPC}} \left(\underbrace{a_t}_{\mathsf{assets}} + \underbrace{\mathbb{E}_t \left[\sum_{k=0}^{\infty} (\beta \omega)^k (y_{t+k} - t_{t+k}) \right]}_{\mathsf{permament income net of taxes}} \right) - \underbrace{\psi \mathbb{E}_t \left[\sum_{k=0}^{\infty} (\beta \omega)^k r_{t+k} \right]}_{= 0 \text{ with "neutral" MP}} - \sigma \tilde{e}_t$$

- $\omega = 1$ nests RANK
- ω < 1 \Rightarrow high MPC, high discounting; mimics liquidity frictions/HANK

AD

■ AD: perpetual youth OLG, with survival prob $\omega \in (0,1]$ simplifying assumptions: annuities; social fund; labor unions; no capital

$$c_t = \underbrace{(1 - \beta \omega)}_{\mathsf{MPC}} \left(\underbrace{a_t}_{\mathsf{assets}} + \underbrace{\mathbb{E}_t \left[\sum_{k=0}^\infty (\beta \omega)^k (y_{t+k} - t_{t+k}) \right]}_{\mathsf{permament income net of taxes}} \right) - \psi \underbrace{\mathbb{E}_t \left[\sum_{k=0}^\infty (\beta \omega)^k r_{t+k} \right]}_{= 0 \; \mathsf{with "neutral" MP}} - \sigma \tilde{e}_t$$

- $\omega = 1$ nests RANK
- ω < 1 \Rightarrow high MPC, high discounting; mimics liquidity frictions/HANK
- Use market clearing and rewrite recursively ⇒ modified DIS

$$y_t = -\sigma r_t + y_{t+1} + \underbrace{\frac{(1-\beta\omega)(1-\omega)}{\omega} d_{t+1}}_{\sigma} - \sigma e_t$$

wealth or liquidity effect eq 0 only if $\omega < 1$

Fiscal Policy

- Baseline: risk-free, one-period, real bonds (as in Barro etc)
 - later: nominal and/or long-term debt
- Gov budget:

$$d_{t+1} = \beta^{-1}(d_t - s_t)$$
 w/ $s_t \equiv \text{tax}_t - \text{gov}_t - \frac{D^{ss}}{R^{ss}Y^{ss}}r_t$

ullet plus no-Ponzi (or HH transversality) $\Rightarrow d_t = \mathit{NPV}(s_t)$

Fiscal Policy

- Baseline: risk-free, one-period, real bonds (as in Barro etc)
 - later: nominal and/or long-term debt
- Gov budget:

$$d_{t+1} = eta^{-1}(d_t - s_t)$$
 w/ $s_t \equiv ax_t - ext{gov}_t - rac{D^{ss}}{R^{ss}Y^{ss}}r_t$

- plus no-Ponzi (or HH transversality) $\Rightarrow d_t = NPV(s_t)$
- **Fiscal Rule:**

$$s_t = \underbrace{\tau_y y_t}_{\text{automatic stabilizer}} + \underbrace{\tau_d d_t}_{\text{fiscal adjustment}}$$

 τ_d : how fast taxes are hiked (or g is cut) in order to stabilize debt

Equilibrium and Monetary Policy

Definition. An equilibrium is a (bounded) path $\{r_t, y_t, \pi_t, d_t\}$ such that

- y_t satisfies DIS (consumer optimality + goods/asset market clearing)
- lacktriangleright π_t satisfies Phillips curve (worker/firm optimality + labor market clearing)
- lacksquare d_t satisfies gov's flow budget, along with FP rule and no-Ponzi
- 4 variables, 3 equations \Rightarrow CB chooses $\{r_t\}$, equilibrium maps $\{r_t\}$ to $\{y_t, \pi_t, d_t\}$ subtleties: boundedness; unique equil; implementation w/ nominal rate

Q1: how does τ_d matter holding $\{r_t\}$ fixed? **Q2:** how does τ_d matter along *optimal* MP?

au_d in RANK vs HANK

τ_d in RANK

- How does FP matter in RANK?
- Suppose $\omega = 1$ and, wlog, let $\{r_t\} = 0$. Then:

$$c_t = (1 - \beta) \mathbf{z_t} + (1 - \beta) \mathbb{E}_t \sum_{k=0}^{\infty} \beta^k y_{t+k}$$
 with $\mathbf{z_t} \equiv \mathsf{assets}_t - \mathbb{E}_t \sum_{k=0}^{\infty} \beta^k \mathsf{taxes}_{t+k}$

■ In equilibrium, FP has no wealth effect:

$$\mathsf{assets}_t = d_t = \mathbb{E}_t \sum_{k=0}^\infty \beta^k \mathsf{taxes}_{t+k} \quad \Rightarrow \quad \mathbf{z}_t = \mathbf{0} \quad \Rightarrow \quad c_t = \underbrace{(1-\beta)\mathbb{E}_t \sum_{k=0}^\infty \beta^k y_{t+k}}_{\mathsf{permanent income}}$$

- Ricardian equiv can fail, and FP can drive c, y and thus π , only via self-fulfilling belief
 - \bullet if others spend more \Rightarrow my permanent income increases \Rightarrow I spend more

Fiscal dominance in RANK

- Essence: fiscal dominance in RANK = self-fulfilling belief
 - Formal analysis: ALW & Zhang (2025)
 - Irrelevant details: whether debt is real or nominal, whether the gov's IBC is a constraint or an equil condition, which authority is active, etc
- This mechanism is controversial, hard-to-test, and fragile
 - If agents expect y=0 (return to steady state) at $t<\infty$, instead of asymptotically, then:
 - \blacksquare y and π invariant to FP
 - MP dominant even if Taylor principle is violated
 - Same w/ appropriate MPE concept (ALWZ 2025) or global-game perturbation (AL 2022)"
- Takeaway: let's "outlaw" fiscal dominance in RANK and instead focus on HANK

au_d in HANK

■ Same consumption, modulo $\beta \mapsto \beta \omega$:

$$c_t = \underbrace{(1 - \beta \omega) z_t}_{\text{wealth effect}} + \underbrace{(1 - \beta \omega) \mathbb{E}_t \sum_{k=0}^{\infty} (\beta \omega)^k y_{t+k}}_{\text{permament income}}$$

■ But now $z_t \neq 0$:

$$z_t = \underbrace{\mathbb{E}_t \sum_{k=0}^{\infty} \beta^k \mathsf{taxes}_{t+k}}_{\mathsf{private assets, gov debt}} - \underbrace{\mathbb{E}_t \sum_{k=0}^{\infty} (\beta \omega)^k \mathsf{taxes}_{t+k}}_{\mathsf{effective tax liability}}$$

- FP matters always, robustly, and for empirically grounded reasons
 - lower τ_d stimulates c_t by shifting taxes to future gen's or easing liquidity constraints

Key Lessons

- 1. ALW'24: HANK features different mechanism, but can produce FTPL-like predictions
 - outcomes that resemble fiscal dominance even if there is monetary dominance
 - although existing litt is built on flawed foundations, its applied lessons are still relevant

Key Lessons

- 1. ALW'24: HANK features different mechanism, but can produce FTPL-like predictions
 - outcomes that resemble fiscal dominance even if there is monetary dominance
 - although existing litt is built on flawed foundations, its applied lessons are still relevant
- 2. ALW'25: CB welcomes fiscal inaction $(\tau_d \approx 0)$
 - helps stabilize against demand shocks
 - eases tax distortions and y, π trade off

Fiscal Inaction as Monetary Support

Policy Problem and Key Question(s)

Policy Problem. Taking (τ_d, τ_y) given, the Central Bank solves

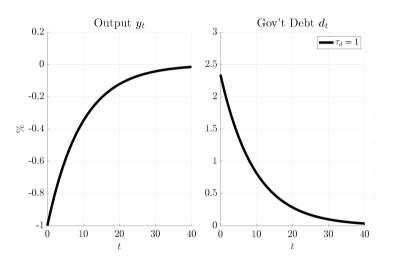
$$\mathscr{L}^{CB} = \mathbb{E}_{\mathsf{shocks}}\left[\min_{\mathsf{set\ of\ equillibria}} \sum_{t=0}^{\infty} \beta^t \left\{ \lambda_y y_t^2 + \lambda_\pi \pi_t^2 + \lambda_r r_t^2 \right\} \right]$$

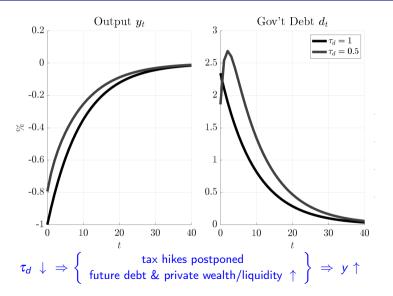
rationale for r^2 : financial stability, uncertainty about shocks/model/transmission, ZLB, etc essential restriction: CB cannot achieve full first-best

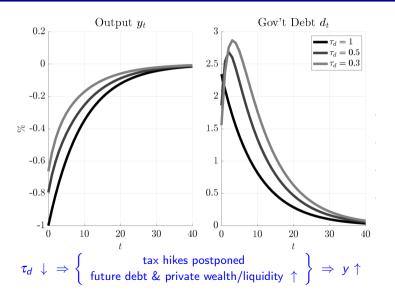
Normative Q: how does optimal $\{r^*, y^*, \pi^*\}$ and resulting loss \mathscr{L}^{CB} vary with τ_d ?

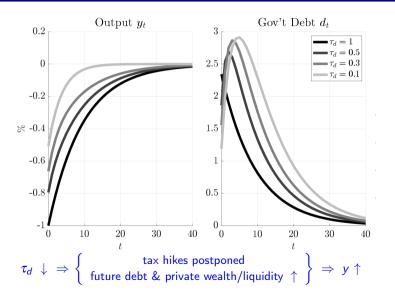
lacktriangle intermediate **positive** step: how does au_d shape business cycle holding MP fixed?

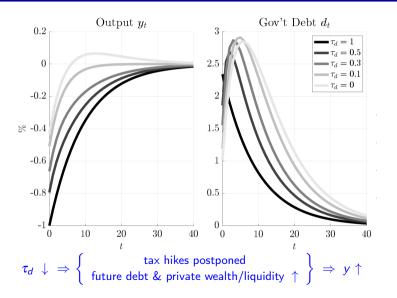
The effect of τ_d for given $\{r\}$


Lemma. \exists a unique equil and is s.t.


$$y_t = \sum_{s=0}^{\infty} \mathscr{Y}_{t,s} (r_s + e_s), \tag{1}$$


where $\mathscr{Y}_{t,s}$ is date-t response to one-off, date-0 news about date-s demand shock or rate hike.


Proposition. Holding $\{r\}$ fixed, slower fiscal adj stabilizes output:


- **1** The IRF coefficients $\mathscr{Y}_{t,s}$ increase with lower τ_d for all t,s.
- **2** Cumulative $\sum_{h=0}^{\infty} \beta^t \mathscr{Y}_{t,s}$ is < 0, but increases with lower τ_d and \to 0 as $\tau_d \to 0$.
- Flip side: slower fiscal adj reduces MP effectiveness!

Sketch of limit as $\tau_d \rightarrow 0$

Consider gov's IBC:

$$0 = \underbrace{\tau_y \sum \beta^t y_t}_{\tau_y NPV(y)} + \underbrace{\tau_d \sum \beta^t d_t}_{NPV(\text{tax hikes})}$$

- Assume contractionary shock: $NPV(y) < 0 \& T \equiv NPV(\text{tax hikes}) > 0$
- As long T > 0: delaying tax hikes $\Rightarrow \uparrow y \Rightarrow \uparrow \tau_y NPV(y) \Rightarrow \downarrow T$
- Delaying more and more \Rightarrow $T \rightarrow 0$. But then also $\tau_y NPV(y) \rightarrow 0$

Two sides of same coin:

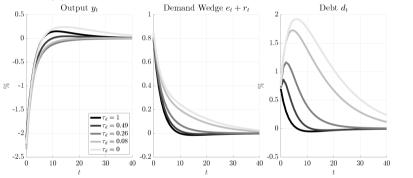
- $NPV(y) \rightarrow 0$: core mechanism when tax hikes are lump-sum (next)
- $NPV(\text{tax hikes}) \rightarrow 0$: crucial once they are distortionary (later)

The effect of τ_d along the optimal MP

Strategy:

- use envelope to get $\frac{\partial \mathscr{L}_{CB}}{\partial \tau_d} = F\left(\{r^*, y^*, \pi^*\}; \left\{\frac{\partial \mathscr{Y}_{t,s}}{\partial \tau_d}\right\}\right)$ use properties of optimum and earlier result about $\frac{\partial \mathscr{Y}_{t,s}}{\partial \tau_d}$ to sign $\frac{\partial \mathscr{L}_{CB}}{\partial \tau_d}$
- proofs for simplified 2-period case: illustrations for infinite-horizon case

Results:

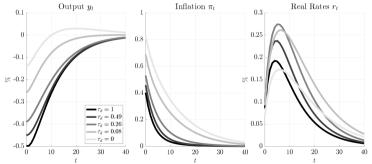

- for supply shocks: $\frac{\partial \mathcal{L}_{CB}}{\partial \tau_t} > 0$, so best $\tau_d = 0$ (provided τ_y not too large)
- for supply shocks, $\frac{\partial \mathcal{L}_{CB}}{\partial \sigma_d} < 0$ so best $\tau_d = 1$

Basic intuition:

stabilizing effect of low τ_d is desirable for AD shocks, undesirable for AS shocks

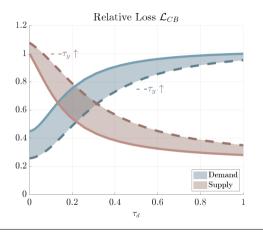
Demand Shocks

IRFs to AR(1) contractionary AD shock, under optimal MP, across different τ_d



- lacktriangledown when $au_d=1$, CB stabilizes y via both concurrent cuts & forward guidance
- lower $\tau_d \Rightarrow more(y,\pi)$ stabilization with less MP action \Rightarrow lower \mathscr{L}_{CB}

Supply Shocks


- $lue{}$ CB leans against π pressures by hiking r and reducing y
- lower τ_d still stabilizes y, but now this works against CB and destabilizes π

IRFs to AR(1) contractionary AS shock, under optimal MP, across different τ_d

• lower τ_d , not only destabilizes π , but may even "demoralize" the CB

Demand vs Supply Shocks

Takeaway: CB prefers $\tau_d=0$ for AD shocks and $\tau_d=1$ for AS shocks

Also: $\tau_v \uparrow$ (larger auto stabilizer) helps w/ AD shocks, hurts w/ AS shocks

Distortionary Fiscal Adjustment

Before:

lacktriangle Tax hikes were lump-sum $\Rightarrow au_d$ operated only via AD (or IKC)

Now:

■ Tax hikes are distortionary $\Rightarrow \tau_d$ operates also via AS (or Phillips curve)

$$\pi_t = \kappa y_t + \tilde{\kappa} \underbrace{\tau_d d_t}_{t_t^{\text{adj}}} + u_t$$

Key Lesson:

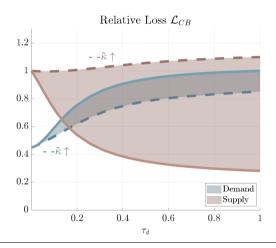
■ This tilts the balance in favor of low τ_d even with cost-push shocks

Supply-side effects of τ_d

Mechanisms inherited from RANK:

- 1. During AS shock: $\pi > 0$, optimal to \downarrow tax distortion \Rightarrow favors $\tau_d \approx 0$
- 2. During AD shock: $\pi < 0$, opportune time for \uparrow tax distortion \Rightarrow favors $au_d pprox 1$
- 3. Tax smoothing \Rightarrow favors $au_d pprox 1 eta$ after either shock is gone

Supply-side effects of τ_d


Mechanisms inherited from RANK:

- 1. During AS shock: $\pi > 0$, optimal to \downarrow tax distortion \Rightarrow favors $\tau_d \approx 0$
- 2. During AD shock: $\pi < 0$, opportune time for \uparrow tax distortion \Rightarrow favors $au_d pprox 1$
- 3. Tax smoothing \Rightarrow favors $au_d pprox 1 eta$ after either shock is gone

New mechanism exclusive to HANK:

4. Postponing tax hikes reduces $Var(NPV(\text{tax distortion})) \Rightarrow \text{favors } \tau_d \approx 0$

Effect of τ_d with distortionary fiscal adjustment

When distortions are large enough, CB prefers $\tau_d = 0$ for both shocks

Quantitative evaluation

Theoretical guidance: $\tau_d \approx 0$ best if

- ullet au_y is not too large relative to PIH departure
- demand shocks are more important
- inflationary pressure from tax distortions is large

Priors about US business cycles:

- lacksquare demand shocks are indeed more important of y, but not for π
 - DSGE: Smets & Wouters (2007), Justiniano, Primiceri, and Tambalotti (2010)
 - Semi-structural VAR: Angeletos, Collard & Dellas (2020)
- unclear: supply shocks and tax distortions?

Next: Quantitative evaluation

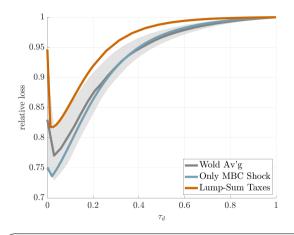
Model and Empirical Discipline

■ AD block: realistic heterogeneity

- three types of OLG consumers to capture heterogeneity in MPCs & wealth
- calibrated to evidence on i-MPCs and wealth shares

■ AS block: Hybrid NKPC and modest tax distortion

- Barnichon & Mesters (2022) update to Gali & Gertler (2000)
- Frisch elasticity = 1


■ Fiscal block:

• $au_y = .33, \, D_{ss}/Y_{ss} = 1.04, \, {\sf and} \, \, \delta = .9$ (maturity structure)

■ Shocks:

- flexible Wold representation a la Caravello, McKay & Wolf (2025)
- or, MBC shock a la Angeletos, Collard & Dellas (2020)

Quantitative evaluation

For the US, significant gains from $au_d \approx 0$

3/4 due to dyn stabilization, 1/4 due to min tax dist

Conclusion

- HANK offers the "correct" way to study M-F interactions
 - sensible, grounded on micro evidence, theoretically robust
- Our specific question: how does speed of fiscal adj affects CB's job?
- Our contribution: fiscal inaction may be welcome because
 - helps stabilize output
 - helps minimize $Var(tax \ distortions)$ and improve y, π trade off
- Obvious caveats:
 - applies to business cycle, not steady state or trends
 - and only insofar y is demand determined (Keynesian mech)

Thank You!