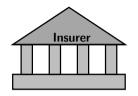
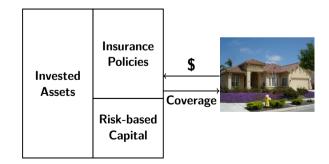
Homeowners Insurance and the Transmission of Monetary Policy Dominik Damast (Luiss), Christian Kubitza (ECB), Jakob Ahm Sorensen (Bocconi)

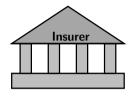
NBFI Workshop of the ChaMP Network November 17, 2025

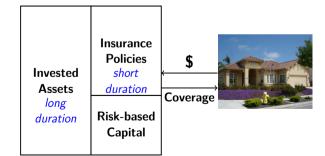
Disclaimer: The views expressed in this presentation are the authors' and do not necessarily reflect those of the European Central Bank or the Eurosystem.

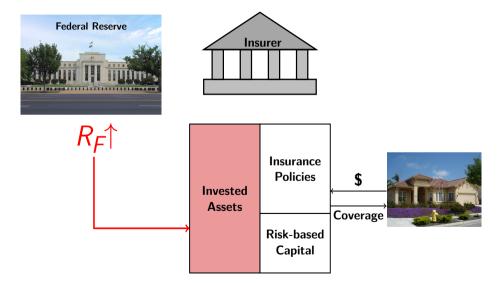
Introduction

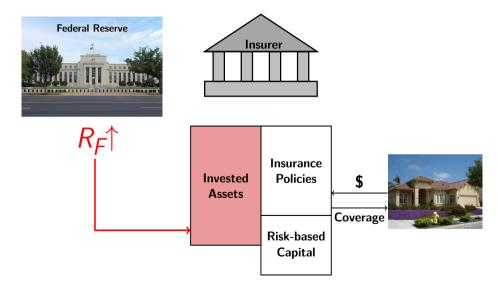

- Financial intermediaries are important for the transmission of monetary policy
- Pass through via insurance markets?
 - Insurers are one-third the size of banks
 - Central for household welfare, especially homeowners insurance:
 - → Protection against climate risk, mandatory for mortgages
 - ightarrow 21% of home costs* on average

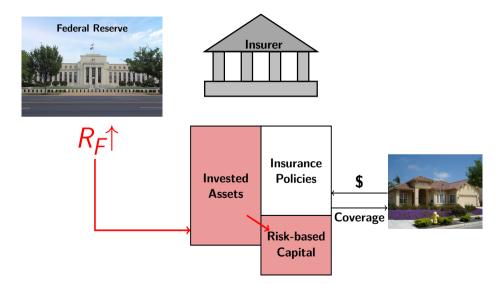

Introduction

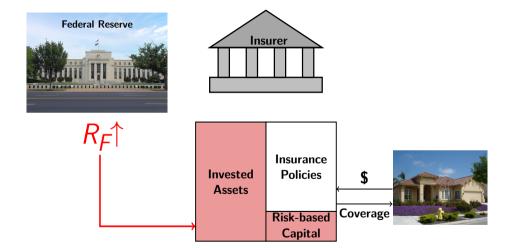

- Financial intermediaries are important for the transmission of monetary policy
- Pass through via insurance markets?
 - Insurers are one-third the size of banks
 - Central for household welfare, especially homeowners insurance:
 - → Protection against climate risk, mandatory for mortgages
 - ightarrow 21% of home costs* on average
- This paper: Monetary policy and homeowners insurance
 - Frictionless benchmark: Interest rates $\uparrow \rightarrow PV(Future claims) \downarrow \rightarrow Insurance prices \downarrow$
 - Instead: Interest rates $\uparrow \rightarrow$ Asset values $\downarrow \rightarrow$ Regulatory constraints \uparrow
 - \rightarrow Insurance prices \uparrow
 - \rightarrow House prices \downarrow

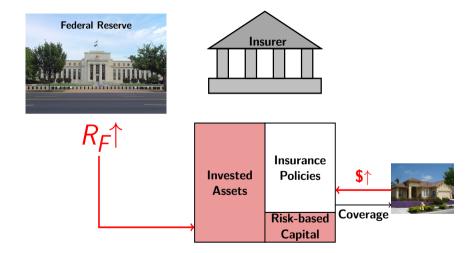

* Home costs = Principal, interest, taxes, insurance











This paper

- (I) Stylized model of non-life insurance and monetary policy
 - Without financial frictions: rate hikes decrease insurance prices
 - With financial frictions: rate hikes increase insurance prices

This paper

- (I) Stylized model of non-life insurance and monetary policy
 - Without financial frictions: rate hikes decrease insurance prices
 - With financial frictions: rate hikes increase insurance prices
- (II) Empirical evidence on homeowners insurance
 - Rate hikes increase insurance prices
 - Driven by constrained insurers with interest-rate sensitive investment portfolios

This paper

- (I) Stylized model of non-life insurance and monetary policy
 - Without financial frictions: rate hikes decrease insurance prices
 - With financial frictions: rate hikes increase insurance prices
- (II) Empirical evidence on homeowners insurance
 - Rate hikes increase insurance prices
 - Driven by constrained insurers with interest-rate sensitive investment portfolios
- (III) Effects on housing markets
 - ullet Local insurers constrained o Stronger effects of hikes on house prices

Contribution

 Interest rate pass-through to financial markets (Neumark and Sharpe 1992 QJE; Kayshap and Stein 2000 AER; Drechsler et al. 2017 QJE; Xiao 2020 RFS) and insurers' investments (Kaufmann et al. 2023; Li 2025; Kirti and Singh 2025)

New: Insurance pricing & amplification through regulatory frictions

• Insurance supply and financial frictions (Koijen and Yogo 2015 AER, 2016 ECMA, 2017 JF; Ge 2022 JF; Sen 2023 RFS; Barbu and Sen 2025; Kalda et al. 2025; Knox and Sorensen 2025)

New: Monetary policy transmission

• Insurance & housing markets: Growing evidence on interlinkages (Blickle and Santos 2022; Sastry 2025 RFS; Ge et al. 2023, 2024; Sastry et al. 2025)

New: Homeowners insurance amplifies macroeconomic shocks

Impact of interest rate hikes on insurance prices

$$\frac{\partial \log P}{\partial r_f} = -1$$

• Frictionless benchmark: prices decrease

Impact of interest rate hikes on insurance prices

$$rac{\partial \log P}{\partial r_f} = -1 + \underbrace{\delta imes (\mathsf{Duration}(\mathsf{A}) - \mathsf{Duration}(\mathsf{L}) \ + c)}_{\mathsf{Shadow \ cost \ of \ capital}}$$

where $\delta = \text{regulatory friction}$

- Frictionless benchmark: prices decrease
- If frictions ($\delta > 0$) and duration gap sufficiently large: prices increase
 - Interest rate $\uparrow \Rightarrow$ Asset values $\downarrow \Rightarrow$ Shadow cost of capital $\uparrow \Rightarrow$ Price \uparrow

Data

- (1) All price filings in US homeowners insurance from 2010 to 2019 (S&P)
 - \Rightarrow Information on insurer, state, product, $\Delta Price,$ filing date
- (2) Insurer balance sheets (NAIC)
 - ⇒ Security-level asset holdings and transactions, regulatory capital requirements

Data

- (1) All price filings in US homeowners insurance from 2010 to 2019 (S&P)
 - \Rightarrow Information on insurer, state, product, $\Delta \text{Price, filing date}$
- (2) Insurer balance sheets (NAIC)
 - \Rightarrow Security-level asset holdings and transactions, regulatory capital requirements

	N	Mean	SD	р1	p25	p50	p75	р99
Filing level Δ Price (%) Filing time	27,357	6.01	6.30	-8.20	0.70	5.00	9.60	27.00
	27,357	420.12	427.35	5.00	195.00	358.00	452.00	2,238.00

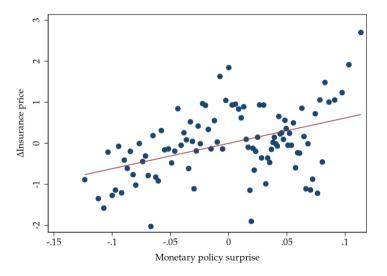
Empirical specification

$$\Delta \mathsf{Price}_f = \beta \ \Delta \mathsf{MP}_{(t-1:t-6)} + \mathsf{Controls} + \mathsf{FEs} + \varepsilon_f$$

- ΔPrice_f : Price change of filing f of insurer i in state s in month t
- $\Delta MP_{(t-1:t-6)}$: High-frequency changes in 10y Treasury yield around FOMC meetings

Empirical specification

$$\Delta \mathsf{Price}_f = \beta \ \Delta \mathsf{MP}_{(t-1:t-6)} + \mathsf{Controls} + \mathsf{FEs} + \varepsilon_f$$


- ΔPrice_f : Price change of filing f of insurer i in state s in month t
- $\Delta MP_{(t-1:t-6)}$: High-frequency changes in 10y Treasury yield around FOMC meetings
- Controls:
 - Insurer characteristics (including size, lagged profitability)
 - State characteristics (including lagged disaster damages, Δ GDP, inflation)
 - Macro characteristics (VIX, ΔGDP, inflation)

Monetary policy hikes increase insurance prices (no controls)

Monetary policy hikes increase insurance prices

	Depende	Dependent variable: $\Delta Price_f$				
	(1)	(2)	(3)			
$\Delta MP_{(t-1:t-6)}$	9.713*** [3.84]	8.118*** [3.87]	7.350*** [3.63]			
Insurer controls State & macro controls Insurer-State FE Product-State FE	Yes Yes	Yes Yes Yes	Yes Yes Yes Yes			
No. of obs. R^2	27,357 0.315	27,357 0.331	27,357 0.346			

Elasticity: +7 ppt (≈ 1 sd) vs. -1 ppt (frictionless benchmark)

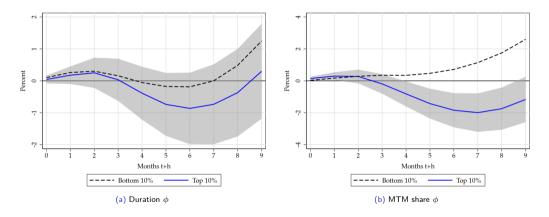
- MoPo $\uparrow \to$ Asset values $\downarrow \to$ Regulatory capital ratio $\downarrow \to$ Insurance Prices \uparrow
 - (1) Constraints
 - (2) Assets held at market value: high-yield bonds & stocks
 - (3) Assets with long duration

- MoPo $\uparrow \to$ Asset values $\downarrow \to$ Regulatory capital ratio $\downarrow \to$ Insurance Prices \uparrow
 - (1) Constraints
 - (2) Assets held at market value: high-yield bonds & stocks
 - (3) Assets with long duration

Examine balance sheet determinants:

$$\Delta \mathsf{Price}_f = \beta \, \mathsf{Constrained}_{i,y-1} \times \Delta \mathsf{MP}_{(t-1:t-6)} + \mathsf{Controls} + \mathsf{FEs} + \varepsilon_f$$

- Constrained_{i,y-1}: Lowest tercile of (RBC Ratio_{i,y-1} $\overline{\text{RBC Ratio}}_{i,y-(2:6)}$)
- Portfolio sensitivity:
 - portfolio duration (p10-p90: 4.2-9.8)
 - share of assets held at market value (p10-p90: 0%-37%)

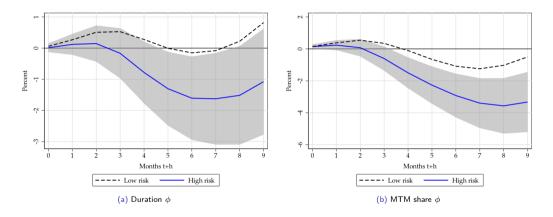

Regulatory constraints & investment sensitivity drive monetary policy impact:

		Dependent variable: $\Delta Price_f$				
	Constraints:	Regulatory capital	+High MTM	+Long duration		
		(1)	(2)	(3)		
Constrained _{i,y-1} $\times \Delta MP_{(t-1:t-6)}$		6.281***				
(1.1.0)		[3.21]				
Other interaction terms		Yes				
Insurer controls		Yes				
Insurer-State FE		Yes				
Product-State-Year-Month FE High sensitivity-Year-Month FE		Yes				
No. of obs.		23,527				
R^2		0.671				
Within R^2		0.014				

Regulatory constraints & investment sensitivity drive monetary policy impact:

	Dependent v	Dependent variable: $\Delta Price_f$			
Constraints:	Regulatory capital	+High MTM	+Long duration		
	(1)	(2)	(3)		
$Constrained_{i,y-1} \times \Delta MP_{(t-1:t-6)}$	6.281*** [3.21]	3.846* [1.87]	1.521 [0.74]		
$High\ sensitivity_{i,y-1} \times Constrained_{i,y-1} \times \Delta MP_{(t-1:t-6)}$		12.040** [2.14]	15.320*** [3.15]		
Other interaction terms	Yes	Yes	Yes		
Insurer controls	Yes	Yes	Yes		
Insurer-State FE	Yes	Yes	Yes		
Product-State-Year-Month FE	Yes	Yes	Yes		
High sensitivity-Year-Month FE		Yes	Yes		
No. of obs.	23,527	23,527	23,418		
R^2	0.671	0.676	0.682		
Within R ²	0.014	0.014	0.017		

Home prices decline more when insurers are more sensitive



Top 10%: Insurers most sensitive to monetary policy

... especially in disaster-exposed areas

Plots the differential impact of hikes for top- vs. bottom-sensitive insurers in high-risk and low-risk counties.

Additional results & construction zone

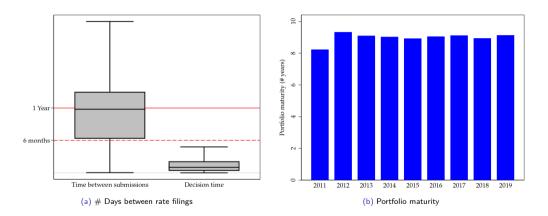
Additional results:

- Impact on mortgage applications
- New measure for asset sensitivity accounting for equity duration
- Results robust to alternative inflation controls and different time windows
- No significant impact of monetary policy on filing probability or type of filing

Ongoing work:

- Data up to 2025
- County-level variation in insurer exposure

Conclusion


- Stylized model: Monetary policy transmission driven by financial frictions in insurance market
- Empirical evidence that rate hikes
 - increase insurance prices
 - driven by sensitivity of insurers' investments and regulatory constraints
 - amplify transmission to housing markets

Policy implications:

- Countercyclicality: Insurance sector amplifies monetary policy in bad times
- Insurance especially relevant for households with exposure to natural disasters
 - ⇒ Monetary policy meets climate risk

Conclusion

Monetary policy surprises

• Homeowners insurance has one year maturity at median

Conclusion

Included controls

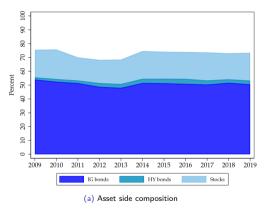
- Insurer-level controls: Log(Assets), leverage, ann. ROE, RBC ratio, ann. underwriting gain scaled by lagged assets, ann. investment income scaled by lagged assets
 - All measured 5 quarters, i.e., one year before the filing
- **State-level controls**: Log(Mean 5-yr disaster damages), Log(Standard deviation of 5-yr disaster damages), Log(Per capita GDP), ann. change in HPI
 - All measured at the end of the preceding year; HPI change measured at the end of the preceding quarter
- Macro controls: CBOE Volatility Index, GDP growth over previous 6 months, CPI inflation over previous 6 months
 - All measured at the end of the preceding quarter

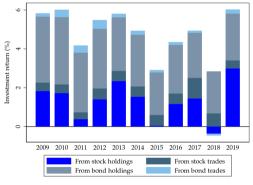
Robustness: Monetary policy and insurance prices

		Sample	windows	Inflatio	Inflation controls		
	Specification:	Post 2010	2010 Post 2011		U.S. states	MP horizon	
		(1)	(2)	(3)	(4)	(5)	
$\Delta MP_{(t-1:t-6)}$		8.786*** [3.82]	6.430*** [2.91]	8.104*** [3.74]	9.313*** [4.50]		
$\Delta MP_{(t-1:f_{-1})}$						6.723*** [7.37]	
Insurer controls		Yes	Yes	Yes	Yes	Yes	
State controls		Yes	Yes	Yes	Yes	Yes	
Macro controls		Yes	Yes	Yes	Yes	Yes	
Insurer-State FE		Yes	Yes	Yes	Yes	Yes	
Product-State FE		Yes	Yes	Yes	Yes	Yes	
No. of obs.		34,558	31,525	37,607	17,065	37,607	
R^2		0.325	0.345	0.306	0.364	0.313	
Within R ²		0.076	0.087	0.065	0.069	0.075	

Robustness: Monetary policy and insurance prices

Dep. variable:	Other filin	g variables	Exte	nsive margin		
	P'holders _f	Premiums _f	$1(Rate\ filing_{ist})$	$1(Filing_{ist})$	$\Delta Price_{ist}$	
	(1)	(2)	(3)	(4)	(5)	
$\Delta MP_{(t-1:t-6)}$	0.564*** [2.83]	0.005 [0.01]			0.955*** [4.31]	
$ \Delta MP_{(t-1:t-6)} $			-0.089***	-0.079***		
(//			[-3.69]	[-2.98]		
Insurer controls	Yes	Yes	Yes	Yes	Yes	
State controls	Yes	Yes	Yes	Yes	Yes	
Macro controls	Yes	Yes	Yes	Yes	Yes	
Insurer-State FE	Yes	Yes	Yes	Yes	Yes	
Product-State FE	Yes	Yes				
State-Season FE			Yes	Yes	Yes	
No. of obs.	36,129	36,458	493,662	493,662	493,662	
R^2	0.795	0.793	0.038	0.038	0.029	
Within R ²	0.033	0.067	0.016	0.016	0.013	

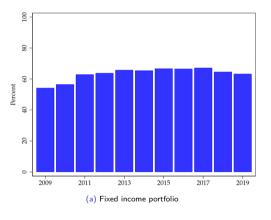

Investment income changes and regulatory capital

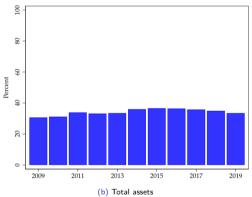

	Dependent variable: $\Delta \textit{Regulatory capital}_{i,y}$						
	(1)	(2)	(3)	(4)	(5)	(6)	
Investment income (in USD) $_{i}$,0.966*** [11.94]	0.966*** [11.94]					
From stocks			1.013*** [13.15]	1.013*** [13.15]			
From bonds			0.757*** [5.15]	0.757*** [5.15]			
From holding stocks			. ,	. ,	0.998*** [10.36]	0.998*** [10.36]	
From holding bonds					0.850*** [9.34]	0.850*** [9.34]	
Insurer FE Year FE	Yes	Yes Yes	Yes	Yes Yes	Yes	Yes Yes	
No. of obs.	7,063	7,063	7,063 0.562	7,063	7,063	7,063	
Within R^2	0.561 0.308	0.561 0.308	0.310	0.562 0.310	0.608 0.382	0.608 0.382	

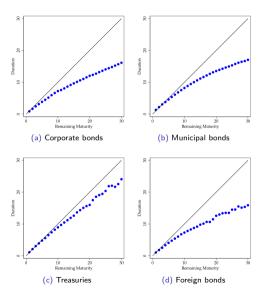
Asset composition

(b) Investment income composition

Measuring duration


Macaulay duration_{b,t} =
$$\sum_{j=t}^{T} j \cdot \frac{CF_{b,j}}{MV_{b,t}}$$


- j: time in years; CF_{bj} : cash flow at time j; MV_{bt} : market value at time t
- We use several data sources to measure securities' end-of-year duration
 - Mergent FISD: bond issue information
 - TRACE and MSRB: bond prices
 - NAIC: for missing information
- We obtain durations for more than 449,000 securities


Measuring duration

Measuring duration

Measuring duration: Interest rate sensitivity

	Dependent variable: R_{bm}							
Price variable:		Media	Average price					
Sample period:	2009:M1-2019:M12			2006:M1- 2019:M12	2009:M1- 2019:M12	2006:M1- 2019:M12		
	(1)	(2)	(3)	(4)	(5)	(6)		
ΔMP_{m-1}	-9.516*** [-15.64]	-8.996*** [-15.39]	-1.929** [-2.00]	-1.620 [-1.55]	-1.460** [-2.32]	-0.833 [-1.39]		
$Duration_{b,y(m)-1}$	0.146*** [29.23]	0.116*** [19.21]	0.117*** [19.47]	-0.046*** [-8.17]	0.115*** [20.45]	-0.042*** [-7.77]		
$Duration_{b,y(m)-1} imes \Delta MP_{m-1}$	-0.433*** [-6.14]	-0.550*** [-7.89]	-0.313*** [-4.43]	-0.160** [-2.38]	-0.258*** [-4.63]	-0.146*** [-2.65]		
Bond FE Controls $\Delta MP_{m-1} \times Controls$	Yes	Yes Yes	Yes Yes Yes	Yes Yes Yes	Yes Yes Yes	Yes Yes Yes		
No. of obs. R^2 Within R^2	1,000,808 0.086 0.009	789,995 0.125 0.015	789,995 0.128 0.018	899,405 0.055 0.019	789,995 0.105 0.018	899,405 0.057 0.019		

