Corporate Debt Structure, Access to Credit, and Monetary Policy

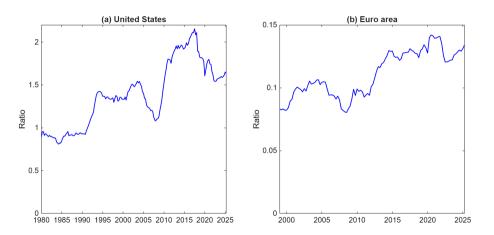
Adam Gulan Aino Silvo

Bank of Finland

ChaMP WS1 NBFI workshop SAFE Institute, Frankfurt, 17 November 2025

Work in progress

The views expressed in this paper are solely those of the authors and do not necessarily reflect the views of the Bank of Finland.


Roadmap

- Introduction
- 2 The model
- Results: baseline dynamics
- 4 Results: counterfactual experiment with a higher bond-loan ratio
- Conclusions

Roadmap

- Introduction
- 2 The mode
- Results: baseline dynamics
- Results: counterfactual experiment with a higher bond-loan ratio
- Conclusions

Corporate bond-to-loan ratio in the US and the euro area

Sources: ECB (Quarterly Sector Accounts), Federal Reserve (Flow of Funds), authors' calculations.

Cyclicality of corporate debt structure in the euro area

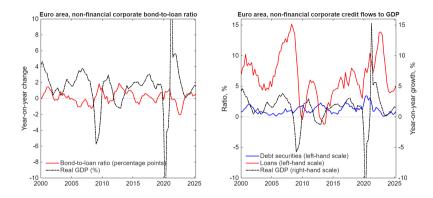


Figure: Source: Eurostat, ECB, authors' calculations.

corr(B/L ratio, GDP) = -0.45, corr(B flows, GDP) = -0.12, corr(L flows, GDP) = 0.38

Previous literature

- Bank lending vs. broad credit channels of MP transmission, starting with Bernanke and Gertler (1989), Kashyap and Stein (1994), Oliner and Rudebusch (1996), ...
- Bond-loan substitution following MP shocks in firm-level and aggregate data: Becker and Ivashina (2014), Holm-Hadulla and Thürwächter (2021), Lhuissier and Szczerbowicz (2022)
- Aggregate dynamic models with corporate bond/loan debt structure: De Fiore and Uhlig (2011, 2015), Verona et al. (2013), Chang et al. (2017), Zivanovic (2019)

This paper

Our contribution: a dynamic New Keynesian model with endogenous corporate debt structure with:

- optimal debt structure: firms' access to credit and optimal choice between direct and intermediated finance is endogenous to the state of the economy
- bank lending channel: bank equity matters and is not a perfect substitute for deposits or debt
- operational bank leverage: bank assets are subject to undiversifiable aggregate risk, which they need to absorb with their equity (covering for depositors)
- firms operate within an otherwise standard New Keynesian environment

Key takeaways

• We develop a **model that rationalizes empirical dynamics** of key variables conditional on MP shocks, obtained from a monetary SVAR model estimated on euro area data

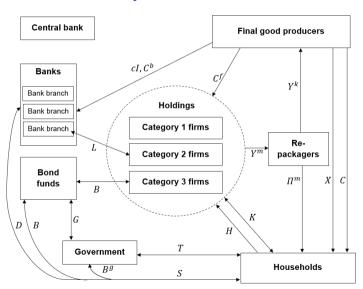
Empirical results

Key takeaways

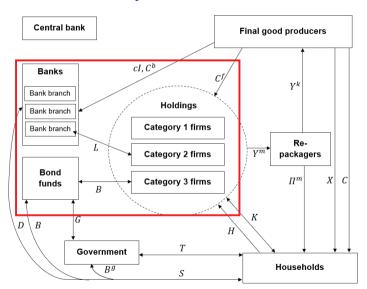
- We develop a model that rationalizes empirical dynamics of key variables conditional on MP shocks, obtained from a monetary SVAR model estimated on euro area data
- Following a contractionary MP shock:
 - ▶ Bank loans become more expensive relative to bonds
 - ► Rebalancing from bank loans towards bonds by low-risk firms (intensive margin)
 - ► Tighter access to bank credit for high-risk firms (extensive margin)

Empirical results

Key takeaways


- We develop a **model that rationalizes empirical dynamics** of key variables conditional on MP shocks, obtained from a monetary SVAR model estimated on euro area data
- Following a contractionary MP shock:
 - ► Bank loans become more expensive relative to bonds
 - ► Rebalancing from bank loans towards bonds by low-risk firms (intensive margin)
 - ► Tighter access to bank credit for high-risk firms (extensive margin)
- Counterfactual analysis: how is monetary policy transmission affected when the bond-loan ratio is higher? (bank-based vs. bond-based economy)

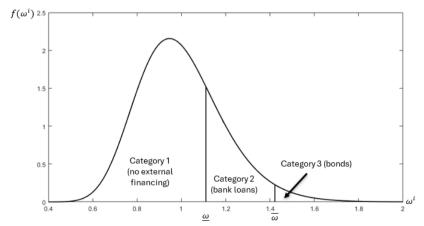
Empirical results


Roadmap

- Introduction
- 2 The model
- Results: baseline dynamics
- Results: counterfactual experiment with a higher bond-loan ratio
- Conclusions

Overview of the model economy

Overview of the model economy

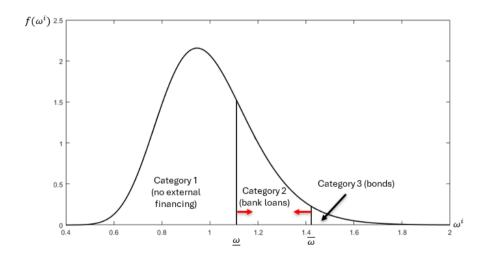


Financial frictions in the model: three key ingredients

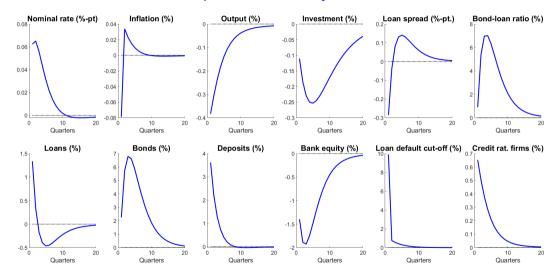
- Intermediate good firms face a cash-in-advance constraint to fund their production More
- Imperfectly observable idiosyncratic productivity of borrowers ex ante creates default risk ex post, the cost of which is borne by banks More
- Ability to raise external funding is limited by a moral hazard problem following Holmström and Tirole (1997); banks act as monitors and can alleviate the information friction More

Financial market equilibrium: distribution of financing mode by productivity signal

Equilibrium cut-offs: $\bar{\omega}_t = \bar{\omega}(i_t, K_t^f, E_t R_{t+1}), \ \underline{\omega}_t = \underline{\omega}(i_t, i_t^b, K_t^f, E_t R_{t+1})$


Calibration of the financial block and model fit

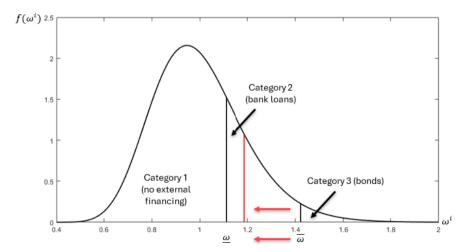
	EA	Model
Ratios matched directly		
NFC bond-to-loan ratio	0.12	0.12
Bank operating costs to bank assets (%)	0.34	0.34
Bank NFC loans to bank equity	2.20	2.20
Firm assets to equity	1.94	1.94
Firm net savings to equity	-0.20	-0.20
Bank return on equity $(\%)$	1.31	1.31
Targets matched in moment matching exercise		
Default rate on bonds (%)	0.008	0.008
Default rate on loans $(\%)$	0.18	0.19
Firm (1-) dividends to equity	0.98	0.96
Key implied ratios		
Firm return on equity (%)	5.37	4.04
Firm return on assets (%)	1.89	0.87
NFC loans to output	3.51	0.55
NFC bonds to output	0.41	0.07


Roadmap

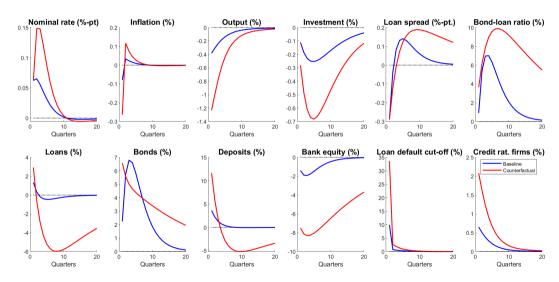
- Introduction
- 2 The model
- Results: baseline dynamics
- Results: counterfactual experiment with a higher bond-loan ratio
- Conclusions

Aggregate bond-loan substitution following MP contraction

Model simulation: a 25 bp contractionary MP shock



Roadmap


- Introduction
- 2 The model
- Results: baseline dynamics
- 4 Results: counterfactual experiment with a higher bond-loan ratio
- Conclusions

Counterfactual: EA with US bond-loan ratio

US counterfactual bond-to-loan ratio 1.66 (vs. EA baseline ratio 0.12) obtained by reducing b_H

Counterfactual: MP shock with higher BL ratio

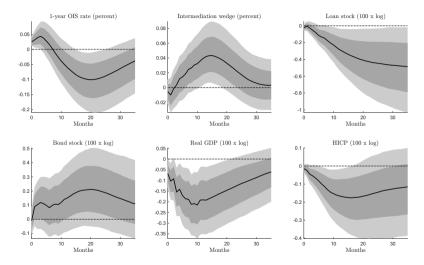
Roadmap

- Introduction
- 2 The model
- Results: baseline dynamics
- Results: counterfactual experiment with a higher bond-loan ratio
- Conclusions

Conclusions

- We develop a tractable New Keynesian DSGE model with endogenous and optimal determination of the corporate debt structure and credit access
- It allows to rationalize the observed cyclical patterns in corporate debt following MP shocks
- Operationalizes the bank lending channel, where MP contraction leads to a squeeze in bank equity and loan supply, but where some firms can switch to market finance
- Counterfactual analysis: corporate debt structure affects MP transmission
- Expanding access to bond finance amplifies transmission, if it makes average borrower less creditworthy (through pecking order mechanism)

Thank you!

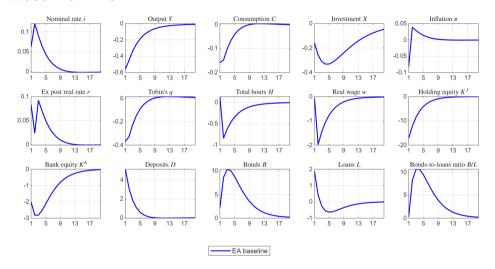

aino.silvo@bof.fi

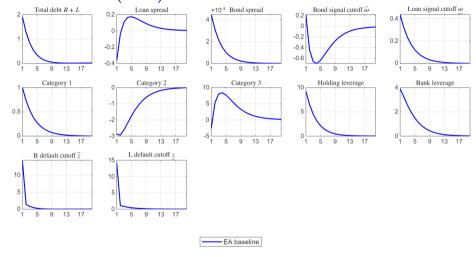
Additional slides

Aggregate evidence from the euro area: A Monetary SVAR

- A Bayesian SVAR following the approach in Jarocinski and Karadi (2020)
- Monthly data over sample 2001M1–2025M4 (omitting the initial COVID crisis period 2020M3–2020M6) with:
 - ▶ 6 macro variables: euro area real GDP, HICP, 1-year OIS rate, stock of corporate loans, stock of corporate bonds, the "intermediation wedge" (corporate loan spread bond spread)
 - 2 high-frequency financial series: 1st principal component of changes in OIS rates at various maturities, changes in the STOXX50 index within narrow (30 min) windows around ECB monetary policy announcements
- Identify structural MP shock through:
 - ▶ **High-frequency identification**: the high-frequency surprises are only affected by the central bank announcements within the narrow time window, and not by any other shocks
 - ► Sign restrictions: following an MP shock, market interest rates and stock prices move in opposite directions

Aggregate dynamics following a 1SD contractionary MP shock




Adam Gulan, Aino Silvo (Bank of Finland)

Baseline IRFs

Baseline IRFs (cntd)

Back

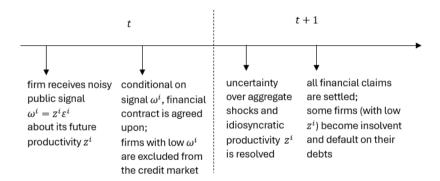
Financial frictions 1/3: External funding constraint of firms

• Intermediate good firms *i* are constrained by a **cash-in-advance constraint** in financing their working capital:

$$I \ge Wh^i + R^K k^i \tag{1}$$

• To produce in period t+1, need to raise external funding $I-K^f$ in period t using either direct market finance (bonds), I^u :

$$I \le K^f + I^{u,i}$$
 (Financing constraint B)
 $z^i R > R^{f,i} + R^{u,i}$ (Ex-post pie-sharing, B)


• or intermediated finance (loans), $I^b + I^d$:

$$I \le K^f + I^{b,j} + I^{d,j}$$
 (Financing constraint L)
 $z^j R > R^{f,j} + R^{b,j} + R^{d,j}$ (Ex-post pie-sharing L)

• Firms that cannot obtain any external financing remain inactive

Financial friction 2/3: Noisy signals – Contract timing

Financial friction 2/3: Noisy signals – Idiosyncratic default risk

• Each firm obtains a noisy public signal about its future productivity z^i before signing the financing contract:

$$\omega^{i} = \mathbf{z}^{i} \epsilon^{i}$$
, $\mathbf{z}^{i} \perp \epsilon^{i}$, $\ln \mathbf{z}^{i} \overset{i.i.d}{\sim} \mathcal{N}\left(\mu_{z}, \sigma_{z}^{2}\right)$, $\ln \epsilon^{i} \overset{i.i.d}{\sim} \mathcal{N}\left(\mu_{\epsilon}, \sigma_{\epsilon}^{2}\right)$

- Firms are protected by limited liability: $R^{f,i} \geq 0$
- Then, a debtor firm is **insolvent** and unable to repay its creditors $ex\ post$ even though it appeared solvent $ex\ ante$ (high signal ω^i) iff

$$z^{i} \leq \frac{R^{u,i}}{R} = \bar{z}^{i}$$
, $z^{j} \leq \frac{R^{b,j} + R^{d,j}}{R} = \underline{z}^{j}$

 Unexpected losses from loan defaults are absorbed by bank equity; losses from bond defaults are covered by a government transfer scheme

Financial frictions 3/3: Moral hazard – Choice of external funding mode

- Ability to raise external funding is limited by the classic double moral hazard model of Holmström and Tirole (1997), conditional on the signal ω about future productivity z
- Firms can either behave diligently (work) or not (shirk); shirking reduces the expected revenue from production by a factor 1Δ , but entails a private benefit $b_H > 0$ to the firm
- Banks are able to **monitor** firms they lend to at a non-verifiable cost cl > 0; this reduces the private benefit from b_H to b_L
- Banks need their own equity stake in the loan to convince depositors that they will monitor the firms

Financial frictions 3/3: Moral hazard – Banks as monitors

- ullet Firms borrowing from banks are monitored; this reduces the private benefit from b_H to b_L
- Banks bear non-verifiable monitoring cost cl > 0
- Banks need their own equity stake in loan to convince depositors that they will monitor the firms
- Because monitoring is costly, loan rates are higher than bond rates

Financial frictions 3/3: Moral hazard – Incentive compatibility

Non-monitored (direct) finance:

$$E_{t} \int_{\bar{z}^{i}}^{\infty} R^{f,i} dF_{z|\omega} \left(z^{i} | \omega^{i} \right) \geq (1 - \Delta) E_{t} \int_{\bar{z}^{i}}^{\infty} R^{f,i} dF_{z|\omega} \left(z^{i} | \omega^{i} \right) + \frac{b_{H}I}{b_{H}I} (1 + i)$$
(Firm IC)
$$E_{t} \int_{z^{i}}^{\infty} R^{u,i} dF_{z|\omega} \left(z^{i} | \omega^{i} \right) \geq (1 + i) I^{u,i}$$
(Investor PC)

Monitored (intermediated) finance:

$$\begin{split} E_t \int_{\underline{z}^j}^{\infty} R^{f \, j} \, \mathrm{d}F_{z|\omega} \left(z^j | \omega^j \right) &\geq (1 - \Delta) \, E_t \int_{\underline{z}^j}^{\infty} R^{f \, j} \, \mathrm{d}F_{z|\omega} \left(z^j | \omega^j \right) + b_L I \, (1 + i) \end{split} \tag{Firm IC}$$

$$E_t \int_{\underline{z}^j}^{\infty} \left(R^{b \, j} + R^{d \, j} \right) \, \mathrm{d}F_{z|\omega} \left(z^j | \omega^j \right) - c I \, (1 + i) - R^{d \, j}$$

$$&\geq (1 - \Delta) \left[E_t \int_{\underline{z}^j}^{\infty} \left(R^{b \, j} + R^{d \, j} \right) \, \mathrm{d}F_{z|\omega} \left(z^j | \omega^j \right) - R^{d \, j} \right] \tag{Bank IC}$$

$$E_t \int_{\underline{z}^j}^{\infty} \left(R^{b \, j} + R^{d \, j} \right) \, \mathrm{d}F_{z|\omega} \left(z^j | \omega^j \right) - R^{d \, j} \geq \left(1 + i^{b \, j} \right) I^{b \, j} \tag{Bank PC}$$

$$R^{d \, j} \geq (1 + i) \, I^{d \, j} \tag{Depositor PC}$$

Households

• Preferences are CRRA over consumption and labor:

$$E_0 \sum_{t=0}^{\infty} \beta^t \left[\frac{\left(C_t - hC_{t-1}\right)^{1-\sigma}}{1-\sigma} - \frac{H_t^{1+\tau}}{1+\tau} \right]$$

Real budget constraint:

$$C_{t} + X_{t} + \frac{S_{t}}{P_{t}} + \frac{T_{t}}{P_{t}} = w_{t}H_{t} + r_{t-1}^{K}K_{t-1} + \frac{S_{t-1}}{P_{t-1}}(1 + r_{t}) + \frac{\Pi_{t}^{m}}{P_{t}}$$

• Households have access to one period, nominally riskless debt which can be allocated in bonds B_{t+1} or bank deposits D_{t+1} . Both modes of saving yield interest r_{t+1} and are perfect substitutes from households' point of view.

Production

• Intermediate goods $y_t^{m,i}$ are produced by monopolistically-competitive firms:

$$y_{t}^{m,i}=z_{t}^{i}R_{t}=z_{t}^{i}A_{t}\left(k_{t-1}^{i}\right)^{\alpha}\left(h_{t}^{i}\right)^{1-\alpha}$$

subject to the (real) working capital constraint $rac{I}{P_t} \geq w_t h_t^i + r_t^K k_{t-1}^i$

- Monopolistically competitive re-packagers buy homogeneous intermediate goods from solvent intermediate good producers. They costlessly differentiate these into varieties y_t^k , and set prices p_t^k for their variety according to the Calvo pricing mechanism.
- Final goods producers purchase varieties y_t^k and combine them into a homogeneous final good y_t using a CES aggregation technology:

$$y_t = \left[\int_0^1 \left\{ y_t^k \right\}^{\frac{\theta - 1}{\theta}} \, \mathrm{d}k \right]^{\frac{\theta}{\theta - 1}}$$

36 / 36